Improving Model Performance Using Dynamic Evaluation and Proper Objective Function

نویسنده

  • Misgana Muleta
چکیده

Models have become important decision making aids. Model evaluation (i.e., global sensitivity analysis, calibration and uncertainty analysis), is crucial to improve their prediction accuracy and reduce the likelihood of making decisions that could lead to undesirable policy outcomes. The conventional approach assumes that model parameters are insensitive to season irrespective of the temporal variability of input forcings such as rainfall. This assumption could significantly compromise model performance for low flow seasons and/or high flow seasons depending on the calibration method pursued. This study will demonstrate the advantage of dynamic (seasonal) model evaluation in improving performance compared to the traditional approach. In addition, the impact of the goodnessof-fit criteria (e.g., mean of sum of square of residuals, Nash-Sutcliffe efficiency criteria, volume based efficiency criteria, etc) used as an objective function during automatic calibration on model performance has been examined. Objective functions that would improve the accuracy of simulating high flows as well as low flows were identified. The added values of using multiobjective calibration, over the more widely used single objective calibration, has also been explored. The Little River Experimental Watershed, one of the U.S. Department of Agriculture’s experimental watersheds, has been used to illustrate the approaches tested in the study. Soil and Water Assessment Tool is the watershed simulation model used for the work. Results show that the season based model calibration approach significantly improved model performance, and calibration is sensitive to the efficiency measure used as object function. As such, multiple efficiency criteria should be used to report model performance as no single efficiency measure performed consistently well in describing goodness of model results. Another important finding is that parameter values that are significantly divergent from their “true” values may lead to model performance that may be considered near perfect even when judged using multiple efficiency measures underlining the challenge of parameter identifiability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis

Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...

متن کامل

Designing a Bank-Based Flexible Performance Evaluation System (Study: Bank Shahr)

 Given the limitations of the existing performance evaluation models for organizations with dynamic internal and external conditions, this study aims to provide a flexible performance evaluation model with adaptability to intra- and extra-organizational changes. The present study first forms a database of criteria related to banking activities. After gathering the experts' opinions, we select 2...

متن کامل

Improving the Energy Management of Parallel Hybrid Electric Vehicle by Dynamic Programming Using Electro-Thermal Model of Battery

In this paper, an offline energy management system (EMS) is proposed for parallel hybrid electric vehicles (HEVs). The proper energy management system is necessary for dividing torque between electrical motor and Internal Combustion Engine (ICE). The battery is a crucial component of hybrid electric vehicles and affects significantly the cost and the performance of the whole vehicle. The primar...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Design of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter

This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011